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CALCULATION OF THE NONLINEAR AERODYNAMIC CHARACTERISTICS 

OF A WING OF FINITE SPAN 

V. A. Algazin UDC 533.6.013.2 

Problems of setting up the methods of calculation and the calculation of a flow around 
thin wings of finite span moving with large angles of attack in an ideal incompressible 
liquid were considered in [1-5]. Common to all methods is successive linearization of the 
problems with respect to time and modelling of the wing and the shroud behind it by vortical 
surfaces. In [1-3] these surfaces are replaced by a discrete system of vortical segments of 
constant intensity. In [4] the surface modeling the wing is replaced by a system of vortex 
rings which is analogous to the system being used in [i], while the account of the vortex 
shroud is based on the spatial discretization of the vortex vector which varies with the 
duration of time in accordance with the Helmholtz equation. At the basis of the algorithm 
[5] there lies a spline approximation of the intensity of the vortical surface by a function 
whose form takes into account the singularities of the flow close to the edges of the wing. 

In the present work we have obtained a general system of nonlinear equations of the 
problem of flow around a wing of finite span moving in an ideal incompressible liquid from 
the state of rest. This system is solved by successive linearization [1-5] for a series of 
discrete time instants. The coordinates of points of the vortex shroud are determined, in 
contrast to [1-5], according to a difference expression of the second order. The solution 
of the linear problem (on each step in time) is constructed by means of the method of [5] 
which is modified so that the approximation of the intensity of the vortical layer by spline 
functions of special form is used only when establishing a connection between the various 
components of the discrete singularities. 

The numerical calculations have been carried out within the framework of a model which 
takes into account the vortex shroud emerging only from the rear edge of the wing. The con- 
vergence of the method within the framework of this model was established numerically. The 
problem concerned with the influence of the order of approximation of the intensity of the 
vortical layer and the magnitude of the step in time on the stability of computation is 
considered; the structure of the vortex shroud behind the wind and its influence on the aero- 
dynamic characteristics of rectangular wings with different lengthening, and also dependence 
of the force of drag and the efficiency of a waving wing on the Strouhal number are investi- 

gated. 

i. We consider the motion of a thin wing of finite span in an ideal incompressible 
liquid. We introduce the right-handed rectangular system of dimensionless (referred to the 
length of root chord b of the wing) coordinates O1xlylzl, at an infinitely remote point of 
which the liquid is at rest. Let at the instant of time T = 0 the wing begin motion from 
the state of rest at a certain given velocity V(x1, y~, zl, t), where t = VoT/b, while Vo is 
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a certain characteristic velocity (e.g., Vo = IV(T,)[, T, > 0). We denote the surface of 
the wing and the vortex shroud behind it by So(t) and S~(t), respectively the front edge 
of the wing surrounded by a flow without separation by Ls, and the part of the edge from 
which the vortex shroud emerges by Lw. We assume that the motion of the liquid outside the 
surface S = SoUS~ is potential. 

The surface S(t) will be modeled by a vortical surface with the intensity 

~, = v •  - v _ ) ,  

while the jump in the pressure p at a point M ~S(t) will be determined by means of the 
Cauchy--Lagrange integral 

p_ --p+ 0 [ 
pV~ = -gF . (Y • v) d r  -1- (y X v) (v o - -  Ve), ( 1 . 1 )  

L(M) 

where by the indices plus and minus we have denoted the limit values of the functions when 
approaching the surface S from above and from below respectively; ~ is the base vector of 
the normal to the upper side of this surface; p is the density of the liquid; vo = (v+ +~ _)/ 
2; v e is the transport velocity of the point M under consideration. 

We assume that at each time instant t the surface S(t) is smooth in the sense of Lyapun- 
ov, while the vector-function y(M, t) on it belongs to the class H* [6] in the neighborhood 
of the edge L s. This allows us to determine the velocity at any point of the liquid and at 
a point M ~S(t) by means of the well-known expression of Biot--Savart. The field of veloc- 
ities thus obtained is potential outside S(t), and the perturbed velocities are damped out 
at infinity everywhere outside S~(t). Satisfying the remaining conditions of the problem 
of flow around a thin wing of finite span (see, eog., [i, 5]) for the intensities Yo, Y~ of 
the vortex layers on the surfaces So(t), St(t) and coordinates of the vortex shroud, we ob- 
tain the system of equations for M ~So(t) 

(Vo ~< R)~ dS 4nV. dS; (t.  2) 
11 ~ 

S O S 1 

div  ? .  -= O; ( 1 . 3 )  

for M ~S1(t) 

c~r/Ot = vo(r,  O, r (y ,  l~,) = ro(~,); 

V cos, + m.. 

F F  = + cos 
div  l ' t  : O; 

d'--F , (?o X v) d r  = ( w •  v ) ? l ,  w = v  o - V , M ~ L . , ,  
L(M) 

(1.4) 

(1.5) 

(1o6) 

(1.7) 

where r = r(y, t) is the radius vector of points of the free vortical surface St(t), being 
considered as a function of vorticity y and the time t; ty is the instant of departure of the 
vortex ~; from the edge Lw; ro(Y) is the radius vector of this vortex at t = ty; L(M) is an 
arbitrary curve joining the point M ~L w with a point on the boundary So(t) to the edge Ls; 
Jl, i2 are the base vectors of the coordinate base of the surface S~(t); ~ is the angle be- 
tween the coordinate lines u = const, v = const; guu, guv, g~r are the Gaussian coefficients 

2 
of the surface S~(t), g = guugvv -- guv; the quantities~1(u, v), ~2(u, v) are determined 
at the instant of formation of the vortex y~(u, v, t) and in the following retain constant 
values for fixed u, v on St(t) although the surface itself deforms in accordance with varia- 
tion of the velocity field. 

Since the region of flow of the liquid and the velocity vector V of the motion of points 
of the wing depends on time, the system (1.2)-(1.7) must be solved with initial data which in 
the case of motion from the state of rest has the form 
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s(0)  -~ s0(0), v(M, 0) = 0. (1.8) 

The solution of the system (1.2), (1.3) for ? o will be sought in the class of functions 
satisfying on the edge L s the condition that the component of intensity of the vortical layer 
normal to this edge is zero 

?o'~ = 0 ,  M~.L~. ( 1 . 9 )  

Here �9 is the base vector of the tangent to the surface So(t) on L s surrounded by flow with- 
out separation. 

2. We shall solve the system (1.2)-(1.7) for a series of discrete time instants tn, 
commencing from to = O, for which the conditions (1.8) are fulfilled. 

We assume that at the time instant t = t n the solution of the system is known, and ob- 
tain its solution for t = tn+~ = t n + Atn+~. We introduce a coordinate system Y = 0 to co- 
incide with the plane of right half-wing S[(tn+1). The axis Ox is directed from the front 
edge backward along the root chord, and the axis Oz to the left along the span. We assume 
that the law of motion of the wingis symmetric relative to the Oxy plane. In this case for 
the calculation of the loads on the wing it is sufficient to determine ?o only on one half 
of the wing, for example, S~. 

The surface of the half wing S~ is divided into n x equal strips along the chord, and 
into n z strips along the span. At the intersections of these strips we obtain N = nxn z ele- 
ments Soq. Application of a step procedure in time for the solution of the system (1.2)-(1.7) 
leads to the fact that for t = tn+1 the surface of the right half of the vortex shroud S~ 
will be divided into N~ = (n + l)Ns elements S~q, where N s = n x + n z. The elements S~q(q = 
nN s + i, ..., N~) being formed over the time Atn+~ as a result of exit of vortices from the 
wing, with an accuracy up to quantities of the order (Atn+~) 2 are located in the plane of 
the wing. The totality of these elements is denoted by AS~(tn+~ ). 

With each element Slq(1 = 0, i) of the vortical surface we match the vector F~+I) of 
the summary intensity of the vortex layer ?l, assuming [5] 

*te~('+')---- .f ~ "~' (t'+l) dS. (2.1)  
Stq 

On the sur face So U AS~ the vec to rs  F l_ have two components F lxq ,  F / zq ,  wh i l e  on S[\AS?, 
H 

generally speaking, they have three components which are not zero at the same time. The 
components 1~orq (r = x, z) of the vectors roq are placed at the center of gravity (Xrq, Zrq) 
of elements Soq whose density is Yor [7], while F1q are connectedr with points (Xq, yq, Zq)~ 

whose radius vectors in the Oxyz system are denoted by r~ n+1). S~.q 

T a k i n g  i n t o  a c c o u n t  ( 1 . 4 ) - ( 1 . 6 ) ,  we can  show t h a t  t h e  p o s i t i o n  r q  (n+ l )  and t h e  m a g n i t u d e  
o f  t h e  v e c t o r s  r~(~ +~) (q = 1,  . . . ,  nNs) , which  h a v e  been  formed up t o - t h e  t i m e  i n s t a n t  tn+~ 
are completely determined by the solution of the problem for t < t~+~. The remaining N + N s 
of the vectors F~ +I) (q = i, ..., N) andl~ +~) (q = nN s + i, ...," NI), which schematize the 
surface So(tn+1) U AS~(tn+~), depend on the solution at the time instant under consideration. 
To determine them, from the system of equations (1.2), (1.3), (1.6), and (1.7) we go to the 

system of algebraic equations relative to the 2N + 2N s quantitites Foxq, Fozq, F~qx, F~qz.* 

From the integral equation (1.2), satisfying it at N check points and using the schema- 
tization of the vortical surface S(tn+1) by the discrete system of vectors (2.1), we obtain N 
linear algebraic equations 

N Ns 

q= l  s=l 

'~N 8 (2.2) 

~- 4~Vy (Xi, Zi, tn+l) -- ~ (LlimClm J- L2onC2m), 

*In what is to follow, when it is clear that the quantities being considered refer to the 
time instant tn+1 , the index at the top will be omitted. 
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where 

.'x>~q = l"~,.iq ~ AF~,,~; f w ; ;  ~ llv;,~ ]- AKvi,~ (l ==~ 0, l ,  p = 1, 2); 

s = q --nNs, while the sign plus (minus) corresponds to r = z (r = x). Here 

g.v iq  v : i q  

~q = X ~  - -  X , .q ,  ~ . ~ q  = Z z  - -  6z,.,~, 8 = 1, 

(2.3) 

( 2 . 4 )  

~im, r coincide with (2.4) in the case of Xrq = Xm, Zrq =Zm, where (Xm, Ym, Zm) is the 
coordinate of the point r~ +~) at which the singularity r~'~ ~ is located; !Irq are the 
projections of the base vectors itq of the coordinate base of the element -wq("+1) at the 
point r~n+~) onto the Or(r = x, z) axis; uTa, vla (l = i, 2) are the boundaries of the ele- 
ment S1q (u, v, t); lu~ n+ ) (lv~ n+ )) is the length of the coordinate line v = Vq = (V~q + 
v=q)/2(u = Uq = (U~q +-U=q)/2) for t = tn+~ ; (D~ ~ ~)~ (u , Vq); the quantities AForq, hLq q 
take into account the influence of the left half of the vortical surface and are obtained 
from (2.3), (2.4) for 6 = --i; the expressions for F~rq, AFIr q coincide with the corresponding 
expressions for Forq, AF__~ in the case Xrq = xq, zr~ ~Zq. ~ " " " u ~ at~c The check points Xi, Z i in 
(2.2) are chosen from the condition of m~nzmum q a r" " deviation of the velocity induced 
by the system of singularities (2.1) [7]. We also note that by the choice of the position 
of the discrete singularities (2.1) on the wing So and the part AS~ of the shround $I we 
ensure fulfilment of the Zhukovskii hypothesis about finiteness of the velocity at points 
of the edge L w and the condition 7=0 at the points of break of the wing contour in plan [5,7]. 

From Eq. (1.7), taking into account (lo5), we go to the system of N s equations for the 
intensities of the vortices rolling off 

~<v O0 . 
I_ , ,) 

\ *  ogq  - -  ~ { I g q ]  - -  - -  , (  

l{ : t ~ ,'~' z 

i ::N,a t - ] ,  ] .... t , . . . , n : ;  (2.5) 

\~ o.vq -- --o,vq] 
i:=J. 

where q = (k -- l)n z + j. 

" <  r ( " . ~ ) ,  r("-~*.) i N~ /r ~,-I 1~'=1 lh ,  ( 2 . 6 )  

The system of N + N s equations (2.2), (2.5), (2.6) is not closed, since the number of 
equations is less than the number of unknowns, To obtain yet N + N s equations we use the 
conditions (1.3), (1.6) and the approximation of the intensity of the layer ? o on So and? i 
on AS~ by spline functions of a special form which take into account the singularities of the 
flow on the wing edge Ls, which is described in [5]. Let the component Yoz (Y1z) of the 
intensity of the vortex layer on the element Soq (S~a ~AS~) (in terms of the paper [5])by 
the function ?~) (1 = 0,i). The component ~l~)~is determined from the solution of Eqs. (1.3), 
(1.6) with the boundary condition (1.9), which in the given case assumes the form Tox(0, z~ 
t) = O. According to tbe definition (2,.i) we have 

] t,.q : : . .  "ll,.dxdz he,.q, l := 0, 1, r : :  x, z, ( 2 . 7 )  
S l q  

where A,,q : .[ .[ (y,, -- %,~'~)) d.gdz is the error of approximation on Slq. The integral in (2.7) de- 
s [q 

p e n d s  on  t h e  v a l u e s  o f  t h e  f u n c t i o n s  Yoz ,  Y l z  a t  t h e  c o r n e r  p o i n t s  o f  t h e  w i n g  a n d  t h e  
e l e m e n t  o f  t h e  t r a c e  a d j o i n i n g  t h e  e d g e  L w [ 5 ] .  E l i m i n a t i n g  t h e m  a n d  n e g l e c t i n g  t h e  q u a n t i -  
t i e s  A l r q  * f r o m  ( 2 . 7 )  we o b t a i n  N + N s a d d i t i o n a l  e q u a t i o n s  

�9 It can be shown that in the case of uniform partition of a rectangular wing the elongations 
A into n z strips over the half-span are l&rq[< g',&/(2~z~). 
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I'os : l)t,l ' ,z I l ) , l ' , ,  !-do,  I'Lv :: (;ol'l,z I GII',,~ . ' ,-dr. ( 2 , 8 )  

Here l'or, I'~ r are algebraic vectors of the length N and N~ formed from quantities I',rq. l'~r q 
r e s p e c t i v e l y ;  t h e  m a t r i c e s  Do and  Go a r e  s q u a r e ,  o f  t h e  o r d e r s  N and  Ns ,  w h i l e  D~ and  G~ a r e  
r e c t a n g u l a r ,  o f  t h e  d i m e n s i o n s  N x N s and  N$ x N; t h e  v e c t o r s  d o ,  d~ h a v e  t h e  l e n g t h s  N and 
Ns ,  and  d e p e n d  on  t h e  s o l u t i o n  a t  t h e  t i m e  i n s t a n t  t n ,  w h e r e  i n  v i e w  o f  ( 1 . 9 )  d o ( t o ) = d ~ ( t 0 ) = .  
0 .  The r e l a t i o n s  ( 2 . 8 )  a r e  a d i s c r e t e  a n a l o g  o f  t h e  c o n d i t i o n s  ( 1 . 3 ) ,  ( 1 o 6 ) .  

The s y s t e m  o f  l i n e a r  a l g e b r a i c ,  _ e q u a t i ~  ( 2 . 2 ) ,  ( 2 . 5 ) ,  ( 2 . 8 )  i s  now c l o s e d .  I t s  s o -  
quantities l'i~ '), commencing from n = 0. The values thus found allow lution determines the 

us to determine the continuous vortex layer on S~ [5] which is required in the calculation 
of the distributed loads on the wing. 

3. The normal force Pq (referred to pV~b~/2 ) acting on the element Soq, in accordance 
with (l.l) (Ve== V) we represent in the form 

lPq'~..,f ~ d,P .... Pqx ' I  Pq.. -{ Pvt t-. P,lil, 
80q 

( 3 . 1 )  

where Pqr (r = x, z) determine the part of the force depending on Yor, while the quantities 
Pqt, Pqit are connected with the circulation over the j-th strip of the half-wing 

h-- 1 
�9 d 1 

Pqt = - -  2h ~ ~ [,(,,:; l )o : t  , h -= -~., i .~ (m - -  i )  J~,...~.- ], 
/~t:=l 

x 

SlU 1 (h- - l )h  

Discarding quantities of the order hForq, ojl'or q and above, we obtain 

. . . . .  r , ,  = . _  Wq~ '~'?,~ ~ ,  Pq.v = /Vq.:l oxq Pq: �9 , . 

d 1,0~-i 1.) Pqit - - -  2 h ( l  - -  tt,:h) W ozq , 

where oj = zj_1 -- zj is the width of the j-th strip along the span, the coefficient ~xrk 
determines the position (Xrq = (k -- i + ~xrk) h) of the discrete singularity l'orq on the 
element Soq in terms of fractions of its linear dimensions, while 

IV,I, . . . . .  2w,.(x0,t, zoq, t , j  L), .ro,~ .... ( k  .... 0 . 5 ) h ,  z0j .= O.5(zs_ ,  -T- z 3 .  

The moment of the hydrodynamic forces acting on the element Soq, 
the wing, isrepresented analogously to (3.1) in the form 

3.[ z q = jill zqx "t- 3 l  vtz - I  ~ll':qt -}- Mz,l i t .  

about the front edge of 

Each component Mzqr(r = x, z, t, it) will be considered as the moment of the corresponding 
force Pqr which is applied to the element Soq at the point 

x = ( k - - t  + •  O < •  

Neglecting quantities of the order h2Forq, hzjForq (r = x, z) and higher, we obtain 

• = ~ h ,  • = ~ z ~ ,  • = 0 .5 ,  • = (5 - -  @ = h ) / ( 8 ( l  - -  ~t=h)). 

The elemental inflow force (referred to 0V~b2/2) is obtained from the theorem of momen- 
tum change, applying it to the volume liquid with a sphere of radius c <<i with the center at 
the point (0, z) of the edge L s of the wing. It can be shown that for c § 0 

dQ = -- aa~(z)dz/2,  (3.2) 

where a(z) is the coefficient at the singularity x -I/~ of the component Yoz of intensity of 

520 



the vortex layer. The approximation of the vortex layer proposed in [5] allows us to compute 
- ~ ( n + l )  a(z) in terms of the quanti~y F ozq �9 Integrating (3.2) along the entire edge Ls, we obtain 

the inflow force Q acting on the entire wing. 

The dimensionless coefficients of the normal force P, the inflow force Q, and themoment 
M z are determined as follows: 

N N 
b~P --2 ~ P b~ b~MzS "~2 c,,~ = --f = -~- _ q ,  c q  = m :  = /~f.._ ~, 

q=l  q=l 
(3.3) 

where S is the wing area. 

4. In the case of practical implementation of the method presented in Sets. 2 and 3, 
the algorithof calculation of the aerodynamic characteristics is conditionally divided into a 
series of stages: i) selection of the step in time Atn+1; 2) determination of the coordi- 
nates rq(n+1) of the surface S~ from the solution of the Cauchy problem (1.4) for the q-th 
singularity 

. . . . .  (n) A r(q n§ r ( n ) + - - l q  ~ n + l ,  

where 
( 

[w~ "~, ' N " q ~= nN~-~- t ,  . . . ,  (n ~- 1) ,. 

3) determination of the velocity induced on the wing by the system of discrete singularities 
which were formed up to the time instant t n + Atn+1 from the expressions (2.3), (2.4); 4) 
computation of the connection matrices from (2.8); 5) determination of the quantities Fir q 
(l = 0, i; r = x, z) from the solution of the system (2.2), (2.5), (2.6), (2.8); 6) calcu- 
lation of the field of velocities w(q n+z) at given points of the surface So U s~ and deter- 
mination of the coefficients Cn, mz, Cq. 

We shall consider certain stages of the calculation. In [8], when solving the problem 
of flow without separation around a wing of an infinite span, the step in time Atn+1 = tn+~ -- 
tn was chosen from the condition 

Atn+l = t/(nxwx(t,~)), (4 oi) 

where w x is the relative velocity at a point of the rear edge. The condition (4.1) ensures 
uniformity of the distribution of vortices in the neighborhood of the rear edge of the pro- 
file from which the vortex shroud emerges. 

In the calculations to be presentedbelow, Atn+1 is chosen from the condition (4.1), where 
in the role of w x at any time instant tn+1 we have the velocity value <Wx> averaged over the 
length of the rear edge. The subsequent three stages (2-4) do not present major difficulties. 
The determination of the quantities Fir q (stage 5) on S~ U AS7 in the framework of a model 
which takes into account the vortex shrdud running off all edges of the wing, except the 
front edge Ls, is connected with elimination of a series of difficulties of a methodological 
character. In particular, when considering nonlinear nonstationary problems in the frame- 
work of this model, the magnitudes of the elements being formed over the time Atn+1 , close to 
the side and rear edges of the wing, in a number of cases are different. This leads to non- 
uniformity in the location of the discrete singularities close to these edges and, as a conse- 
quence, to insufficient accuracy in the determination of their intensity. In the given paper 
the stage 5 and the subsequent examples of a numerical calculation are considered without 
taking into account the side vortex shroud. The solution of the system (2.2), (2.5), (2,6), 
(2.8) was determined on a BESM-6 computer by means of the generalized method of elimination 
of Gauss. From the known values of FZr q we determined the velocity field and carried out 
the calculation of the aerodynamic characteristics. After this, transition was effected to 
the next step in time. 

The convergence of the algorithm proposed above was verified numerically by comparing 
the results of the calculation with different number N of vortices on the half-wing. The 
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results of the calculation with a step in time At n and with a step in time equal to half of 
this (in view of (4.1) this corresponds to the fact that if the number of elements along 
the chord in one case is nx, then in the other case it will be 2nx) practically coincided. 

This allows us to draw the conclusion about the convergence of the method in the given case. 

We investigated the influence of the order of approximation of the vortex layer on the 
elements ASIq of the vortex shroud, on the stability of the computation of the aerodynamic 

characteristics. In [5] it was proposed to approximate Yoz on the wing close to the edge L w 
by a polynomial of the second degree in x, and Y1z on AS~ by a linear function. The results 

of calculation of a number of wings with such an approximation showed that the computation 
becomes unstable. The instability of the calculation is connected, apparently, with the 
fact that variation of the matrices Dl, G~ (l = 0.I) in (2.8) alters the conditioning of the 

matrix of the entire system (2.2), (2.5), (2.6), (2.8). Therefore in the following, on AS~ 
we took approximation of the same order as on the wing~ 

When computing with the step in time Atn+~ = At = const we investigated the influence of 

the quantity E t = Atn+i/(nx<Wx(tn)> ) on the accuracy and stability of the calculation of the 
loads on the wing. It turned out that in the case s t > 1 (max (et) = 2) the computation is 
stable. The coefficients (3.3) of forces and moments obtained as a rbsult of such a calcu- 
lation, for t greater than a certain t,, practically coincide with the corresponding quanti- 
ties in the case of c t = I. As for the calculation in the case of s t < I, then the compu- 
tation becomes unstable after 5-10 steps in time, if s t < 0.8. 

5. We now present certain results of the calculations. In Fig. 1 we have depicted the 

right half of the vortex shroud behind the wing of the length aspect i = 2, which begins to 
move from the state of rest with the velocity V = const = 1 at the angle of attack a = 20 ~ . 
We see that behind the wing there is formed an initial vortex which with elapsing time is 

worn out by the flow, and there are also formed vortex plaits close to the side portioD of 
the shroud. 

In Fig. 2 we have presented the dependence of the coefficients of the normal force c n 
and the moment m z of this force relative to the Oz axis, on the time t for a wing I = 2, V = 
I, ~ = i0 ~ By dashed lines we have marked the values of these coefficients obtained ac- 
cording to the linear theory [7]. 

In Figs. 3 and 4 we have carried out a comparison of the experimental values of Cn and 
m z with the corresponding theoretical values obtained on the basis of the method proposed in 

Secs. 2-4. The calculated quantities of the coefficients are shown by solid lines; dashed 
lines are used to show the values of the coefficients obtained on the basis of the linear 
theory [7]. Here we also have represented the experimental data [i0, ii] (circles and tri- 

angles, respectively). We see that the theoretical curve Cn(~) for I = 2 (Fig~ 3) is close 
to the experimental data up to angles of attack ~ ~ 16-18 ~ , while the curve mz(~) is so 
up to angles ~ ~, 11-12 ~ The results of the calculation of On(l) ~ mz(1) for ~ = 

I0 ~ without the side vortex shroud taken into account, well agree with the experimental 

data [i0-ii] and the data of [2, 9] in which a more general model with emergence of a side 
shroud in a fairly broad range of length aspects (i~I~ 4). Analogous calculations of 
Cn(1), mz(l ) for a= 15 ~ showed agreater difference of the results obtained from the data [2~ 
9-11] for wings with the length aspect I < 1.5. This is connected, apparently, with the 
fact that with a decrease in the length aspect and an increase in the angle of attack the 
role of the side vortex shroud in creating the lifting force and moments of the wing becomes 
dominant; stable vortex plaits are formed above the wing [3] which in fact improve the load- 
carrying properties of the wing. 
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About the results concerned with the stationary motion of the wing (V = const) we note 
the following: First, nonstationary values of the aerodynamic characteristics, as t increases, 
monotonically tend to certain values which are subsequently chosen as stationary values; 
second, such a calculation of these characteristics on the basis of the algorithm proposed 
above is fairly economical. For example, for a wing with the length aspect % = 2 in the case 
of N = 25 and 30-40 steps in time, the calculation requires 6-8 min on a BESM-6 computer. 

In the role of another example we present certain results of calculations with vibrating 
wings. When solving problems of flow around such wings, side by side with the coefficients 
Cn, m z we determine the power used to maintain vibrations 

2 2 No(t) - j'A,,,] 
8 0 

where f is the dimensionless velocity of the wing in the direction of the normal, and the 
drag coefficient c T =--Cq. From values averaged over the period of vibrations T = 2~/k(k = 
~b/Vo) <No>, <CT~ we determine the efficiency 

2 .I ~1 ::: pVob'E <c.r>/(2 <No> ). 

In Figs. 5 and 6 we have represented the results of the calculation of a rectangular 
wing with the length aspect % = 2 (u = 0, nx = nz = 5), vibrating in the direction perpen- 
dicular to its plane according to the law f(t) = 0.i sin kt. In Fig. 5 we have presented 
the dependence of the coefficients Cn, mz, c T on time for the Strouhal number k = i. The 
character of behavior of the curves in the case of t < 1 is explained by the influence of 
the transient processes at the beginning of motion from the state of rest. In Fig. 6 we have 
presented the dependence of the efficiency, and the drag coefficient <CT> on the Strouhal 
number k. Here also by dashed lines we have recorded the values of these quantities calcu- 
lated according to the linear theory for a wing of an infinite span [12]. Dots mark the 
quantities N, <CT> , obtained on the basis of the coefficients of aerodynamic derivatives of 
the inflow force presented in [13]. 

524 



LITERATURE CITED 

i. S.M. Belotserkovskii and M. I. Nisht, "A nonstationary nonlinear theory of thin wing 
of an arbitrary shape in plan view," Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 4 
(1974). 

2. M. I. Nisht and O. N. Sokolova, "Calculationof nonstationary nonlinear aerodynamic 
characteristics of wings," Tr. TsAGI, No. 1621 (1974). 

3. V. A. Aparinov, "Calculation of nonlinear aerodynamic characteristics of a wing of com- 
plex form in plan view with the nose vortex shroud taken into account," Izv. Akad. 
Nauk SSSR, Mekh. Zhidk. Gaza, No. 2 (1977). 

4. C. Rehbach, "Calcul num~rique d'~coulements tridimensionelles instationnaires avecnappes 
tourbillonnaires," Rech. Aerosp., No. 5 (1977). 

5. V. A. Aglazin and D. N. Gorelov, "On an arbitrary motion of a wing" of finite span in an 
incompressible liquid," Izv. Sibo Otd. Akad. Nauk SSSR, Ser. Tekh. Nauk, No. 3, Issue 1 
(1974). 

6. N. I. Muskhelishvili, Singular Integral Equations [in Russian], Fizmatgiz, Moscow (1962)~ 
7. V. A. Alglazin,"On the calculation of the aerodynamic characteristics of a wing of 

finite span," in: Dynamics of Solid [in Russian], No. 24, Inst. Gidrodin. Sib. Otd. Akad. 
Nauk SSSR, Novosibirsk (1976). 

8. D. N. Gorelov andR. L. Kulyaev, "Nonlinear problem of nonstationary flow around a thin 
profile by incompressible liquid," Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 6 (1971). 

9. V. Ya. Gordinskii and O. N. Sokolova, "Some results of calculations of flow around rec- 
tangular wings according to a nonlinear theory," Tr. TsAGI, No. 1561 (1974). 

i0. H. Winter, "StrSmungsvorg~nge an Platten und profilierten K~rpern bei kleinen Spann- 
weiten," Forsch. Geb. Ingenieurwes., 6, Nos. i, 2 (1935). 

ii. E. G. Petrov and V. Go Tabachnikov, "Experimental investigation of the aerodynamic 
characteristics of rectangular plates of different length aspect in a broad range of 
angles of attack," Tr. TsAGI, No. 1621 (1974). 

12. A. I. Nekrasov, The Theory of Wings in Nonstationary Flow [in Russian], Akad. Nauk SSSR, 
Moscow (1947). 

13. N. A, Kudryavt~ ~a and I. Ya. Timofeev, "On the inflow force of wings of arbitrary form 
in plan view in the case of non-steady-state motions" Tr. TsAGI, No. 1705 (1975). 

INTERACTION OF THE WAKE OF A POORLY STREAMLINED BODY WITH 

A BARRIER 

Io A. Belov UDC 532.517.43 

Continuing the work begun in [i], we investigate the problem of calculating the plane 
rotational flow of an ideal incompressible fluid near a plane barrier set up in a transverse 
position relative to the flow. Nonzero vorticity is induced in the outer flow by the for- 
mation of a wake after a poorly streamlined bodyplaced in front of the barrier. We illustrate 
the solution of the stated problem in the example of the flow configuration created by uniform 
symmetric flow with velocity U past two parallel plates, one of which simulates the body, and 
the other the barrier. 

For the analytical model of the flow past the plates we use the unsteady vortex model, 
which has been realized in practice by the method of discrete vortices [2] for the case of 
two plates of the same size (Ryabushinskii flow). Unlike the cited work, here we investigate 
flow past plates of different dimensions. The half-width of the second plate downstream is 
denoted by R, and that of the first by H, where H < R. The ratios between the plate di- 
mensions H/R and L/R, were L is the distance between the plates, are adopted as the param- 
eters to be varied. 

An analysis of the vortex structures and fields of directions of the flow velocity vector 
in the wake of the plates for H/R = 0.i-i.0 and L/R = 0.4-2.2 shows that the flow cutoff 
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